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Abstract. We adapt White's density matrix cenormalization group (DMRG) to the direct 
study of critical phenomena. We use the DMRG to generate transformations in the space 
of coupling constants. We postulate that a study of density matrix eigenvalues leads to a nahlral 
identification of renormalized blocks, operators and Hamiltonians. We apply the scheme to the 
phase transition in the anisompic spin-I/2 Heisenberg chain. In the simplesf case where [he two 
most probable states in odd-sized blocks are used to construct approximate renormalization group 
transformations, we find qualitalive improvement upon the standard real-space renormalization 
group method for the thermal exponent Y. 

1. Introduction 

The advent of White's density matrix renormalization group (DMRG) method [l] has led 
to some very successful studies of low-lying excitations and static correlation functions 
in a number of one-dimensional quantum lattice systems [2]. The method represents a 
major improvement upon its precursor the (conventional, Wilson) real-space renormalization 
group (RSRG) method [3] which generally gives poor or slowly converging results for these 
quantities. 

Both methods are truncated basis expansions in that a target state (such as the ground 
state) of a large lattice is built up from blocks of sites from which only a few important 
states are retained. The key difference between the two methods is the way in which the 
important states are determined-for the RSRG method states are retained on the basis of 
energy whereas in the DMRG method states are retained on the basis of how likely they 
are to be part of the target state being investigated. 

It is well documented that the DMRG method works best when the system being studied 
is away from criticality-that is, when there is a substantial energy gap, or when the generic 
correlation functions decay exponentially, with a coITelation length of only a few lattice 
spacings [I, 4, 51. In fact, efforts to study zero-temperature phase transitions by using 
obvious approaches such as investigating the divergence of the correlation length [4] or the 
vanishing of an order parameter [SI have failed because it is very difficult to determine 
these quantities accurately near the critical point. 

It is well known, however, that the RSRG method can be used to generate 
renormalization group transformations in the space of coupling constants 161. Useful 
qualitative and even accurate quantitative results can be obtained for the positions of phase 
transitions and critical exponents I6.71. 
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A next step is to investigate whether the DMRG method can be used to generate 
such transformations and yield accurate phase diagrams and associated critical exponents, 
especially in cases where the RSRG method fails. That is, it would be useful to develop 
a DMRG scheme for coupling constant transformations which has the same accuracy, 
systematic improvability and portability as the DMRG scheme currently being used for 
the calculation of energies and correlation functions. Such a scheme might be very useful 
if applied to the investigation of critical phenomena in complex models such as coupled 
fermion chains. 

Such an investigation has been carried out in a recent series of papers by Drzewifiski 
and co-workers [SI. Results from the RSRG method were compared directly with those 
obtained from its DMRG analogue. In studies of anisotropic XY-models with transverse 
fields, it was generally concluded that the DMRG has no special advantage over the RSRG 
in calculating critical points and exponents. These studies cannot however be considered 
exhaustive. Firstly, the blocks and superblocks used were small-only a few sites. Secondly, 
the models did not afford the total z-spin as a good quantum number. This sometimes 
complicated the process of identifying important block states with renormalized block spin 
variables. 

In this paper we consider a DMRG approach to coupling constant transformations which 
makes use of the fact that within DMRG algorithms we accurately calculate important states 
for very large blocks by retaining large numbers of states at each iteration. We apply this 
approach to a simple model, the anisotropic Heisenberg model, where critical properties 
are very well known [13]. The model has been studied using the RSRG [9] with less than 
encouraging results. We find that the DMRG approach yields qualitative improvement in  the 
nature of the convergence of the thermal critical exponent v as the block size is increased. 

In the following sections we briefly outline the DMRG algorithm and describe how it 
can be used to generate coupling constant transformations. We then present our results for 
the anisotropic Heisenberg model and compare them with the RSRG results of 191. We then 
conclude with some remarks on future directions. 

2. The DMRG and coupling constant transformations 

The DMRG algorithm has been described in great detail [I] so we will be brief in our 
description, concentrating on those points which are relevant to generating renormalization 
group transformations. We restrict ourselves to the infinite-lattice algorithm which we use 
in our calculations and we describe the algorithm in the context of the Heisenberg spin 
chain 

where Si is the spin operator of spin S for site i on the chain and y is the anisotropy. 
The DMRG method is an iterative, truncated basis procedure whereby a large chain (or 

superblock) is built up from a small number of sites by adding a small number of sites at a 
time. At each stage the superblock consists of system and environment blocks (determined 
from previous iterations) in addition to a small number of extra sites. Also determined from 
previous iterations are the mahix elements of the block Hamiltonians and the active spin 
operators (those on the sites at the end(s) of the blocks) with respect to a truncated basis. 
Tensor products of the states of the system block, the environment block and the extra sites 
are then formed to provide a mncated basis for the superblock. The ground state IQ) of 
the superblock is determined by a sparse-matrix diagonalization algorithm. 
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Next, a basis for an augmented block, consisting of the system block and a specified 
choice of the extra sites, is formed from tensor products of system block acd site states. 
The au-pented block becomes the system block in the next iteration. However, in order to 
keep the size of the superblock basis from growing, the basis for the augmented block is 
truncated. We form a density matrix by projecting I$) ($1 onto the augmented block which 
we diagonalize with a dense-matrix routine. We retain the most probable eigenstates (those 
with the largest eigenvalues) of the density matrix in order to form a truncated basis for the 
augmented block that is around the same size as the system block basis. Matrix elements 
for the Hamiltonian and active site operators are then updated. 

The environment block used for the next iteration is usually chosen to be a reflected 
version of the system block. The initial system and environment blocks are each chosen 
to consist of a small number of sites, usually one or two. The accuracy and computer 
requirements of the scheme are fixed by n,, the number of states retained per block (of 
good quantum numbers) at each iteration. n5 determines the truncation error, which is the 
sum of the eigenvalues of the density matrix corresponding to states which are shed in the 
truncation process. The error in quantities such as the ground-state energy scale linearly 
with the truncation error [I]. 

Now, at each iteration we generate coupling constant transformations T as follows. 
After forming the system block of size L we construct a lattice L of size 2L consisting of 
two system blocks. A (small) subset B of the system block truncated basis states is identified 
with a complete basis for a renormalized block of spins of size L' where L' = L / b  and b 
is the renormalization factor. B @ B is then clearly identifiable with a complete basis for a 
lattice L' of size 2L'. Next, the matrix elements of H. the Hamiltonian for L, with respect 
to B @ B (which are readily formed from the matrix elements of the block Hamiltonian and 
active site operator@)) are identified with those of a renormalized Hamiltonian H' defined 
on L'. T is then defined by 

Y' = T(bly) (2) 
where y and y' are set(s) of coupling constant(s) which define the Hamiltonians 31 and IH' 
respectively. 

To complete the prescription we must have a suitable method for choosing the set 
B-its size and makeup-and hence the renormalization factor b, together with the type 
of renormalized block that it is identified as a basis for. We must then check that our 
identification is valid in that the Hamiltonian matrix element identification can in fact be 
made such that H' and H, in a loose sense, have the same symmetries. Ideally, we would 
like E' and H to be of the same form. The resulting system of linear equations for the 
renormalized couplings y' is typically overdetermined. This implies a consistency check of 
the identification. 

As to the choice of B,  just as the density matrix eigenvalues determine which states 
are to be retained in forming a new system block, so too can we use the spectrum of the 
density matrix in order to guide our choice as to the make-up of B. That is, we choose B 
from states that make up the bulk of the weight of the density matrix whose eigenvalues 
sum to unity. 

Choice of the basis B. We commence with the simple example of an S = 1/2 model with 
y = 1 (the isotropic case). We use a periodic superblock of the form . . .-site-system- 
site-environment-.~. . and augment the system block with both sites. The strongest density 
matrix eigenvalues are listed in table 1 for the case of n, = 20. The initial system block 
is a single site so the blocks always have an odd number of sites. The strongest density 
matrix eigenvalues lie in the sector of the Hilbert space where the good quantum number 



9168 

S+ 
S+ = zlci sectors which make up the bulk of the weight of the density matrix. 
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xi Si. has small magnitude. We see that there is a pair of strong eigenvalues in the 

Table 1. The strongest density matrix eigenvalues for the isotropic S = 112 model using 
ns = 20 for various odd block sizes b using periodic boundary wnditions and augmenting by 
two sites per iteration. 

b 

3 
3 
I 
5 
9 
9 
21 
21 

- si 
*3/2 
f1/2 
&3/2 
*l/2 
&3/2 
*l/2 
&3/2 
92112 

Strongest eigenvalues 

0.0000, . . . 
0.5000, 0.0000, 0.0000, ... 
0.0055, . . . 
0.4619, 0.M71, 0.0055, ... 
0.0120, . . . 
0.4251, 0.0484, 0.0120, .__ 
0.0237. . . . 
0.3786, 0.0682;0.0237, . .. 

An obvious choice for B then is the states corresponding to these eigenvalues. We 
identify them with the up and down z-spin states of a renormalized spin-1/2 operator. That 
is, the system block is renormalized to a single site-b = L. As we shall see, the advantage 
of such a choice of B is that H' is of the same form as H. 

Table 2. The strongest density matrix eigenvalues for the isotropic S = 1 model using ns = 20 
far various odd block sizes b using periodic boundary conditions and augmenting by two sites 
per iteration. 

b S i .  

4 * I  
4 0  
6 fl 
6 0  
IO * I  
IO 0 

22 * I  
2 2 0  

Strongest eigenvalues 

0.02752. 0.00000, ... 
0.91746. 0.02752, 0.00000, ... 
0.03917,0.00003, ... 
0.88237, 0.039 17, 0.00003, _ _ ,  

0.05204, 0.000 2 2  . . . 
0.84310,0.05204,0.00022, ... 
0.06938,0.00104, ... 
0.78808.0.06938, 0.00104, ... 

Next, in table 2 we list the strongest density matrix eigenvalues for the case of an open- 
ended superblock of the form system-site-site-environment. We again augment the system 
with both sites. The initial system block is a pair of sites so the blocks are always even. We 
see that the simplest possible identification involves the four strongest eigenvalue-a pair 
in the S+ = il sectors and a pair in the S+ = 0 sector. It is natural to form E from the four 
states corresponding to  these eigenvdues and to identify B as a basis for a block of two 
spin-1/2 sites, i.e., b = L/2. Following [lo] we identify the elements of E with singlet and 
triplet states. That is, we identify the S+ = il states with It?) and I$$) and the strong- 
and weak-eigenvalue (low- and high-energy) S+ = 0 states with (I/&)([?$) - I.)?)) and 
(l/fi)(lt$) + I$?)) respectively. It is found that with this identification E' has the same 
form as H. 

Finally, in table 3 we list the strongest density matrix eigenvalues for a spin-1 model 
using odd-sized blocks, periodic haundary conditions, and augmenting by two sites at a time. 
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Table 3. The strangesf density matrix eigenvalues for the isotropic S = 112 model using 
n, = 20 far v ~ o u s  even block sires b using open boundary conditions and augmenting by two 
sites oer iteration. 

b S:. Strongest eigenvalues 

3 1 2  
3 * I  
3 0  
5 1 2  
5 * 1  
5 0  
9 * 2  
9 * l  
9 0  
21 1 2  
21 il 
21 0 

0.00000. . . . 
0.33333, 0.00000, 
0.33333, 0.00000, 0.00000, ... 
0.00520. . . . 
0.29495, 0.00520, .. . 
0.29495, 0.071 81. 0.00520, 
0.00579. . . . 
0.26230. 0.00579. 
0.26230.0.15410. 0.00579, ... 
0.003 88. . . . 
0.23786, 0.00389. . _ .  
0.237 86. 0.22696. 0.003 89. 

We see that, for small L, the bulk of the density matrix is made up from the three strongest 
eigenvalues which lie in the S+ = 0 and S+ = f l  sectors. When the corresponding states 
are (naturally) identified with the IO) and I+l) states of a spin-1 operator, the resulting 'H' 
has the same form as 'H. However, as L is increased, the second-largest eigenvalue in the 
S+ = 0 sector rapidly becomes comparable to those of the other retained states and the 
identification of the renormalized block with a spin-1 site becomes inconsistent. It becomes 
necessary to incorporate the corresponding state into B which, as in the previous example, 
is identified & a basis for a block of two spin-1R sites. 

The renormalized S = l j 2  Hamiltonian 'H' is not however of the form (l), in that there 
are second- and third-neighbour interactions present with dimerization. This is consistent 
with White's analytic mappings between the spin-1 chain and coupled spin-I/Z chains [12]. 
That is, it becomes natural to identify the renormalized block with a single segment of 
coupled chains. 

2. I .  Discussion-systemtic improvability of transformatiom 

Now that we have described the procedure for generating coupling constant transformations, 
we discuss the question of its accuracy and systematic improvability. These issues are central 
to the success of the DMRG method in calculating energies and correlation functions. We 
consider how the algorithm should be scaled in order to obtain the most accurate results. 

Now, suppose we choose B in the same way at each iteration, e.g., for a spin-l/2 system 
with odd blocks we always form B from two states-the most probable states in the S+ = 3s; 
sectors. We have the guiding principle that. as long as we respect the basic symmetries of 
the Hamiltonian, then for a fixed basis size IBI, the accuracy of the transformations should 
increase with each iteration, with calculated quantities converging to their exact values as 
the block size is increased. 

This principle stems from the fact that the ratio of intrablock to interblock components 
of the Hamiltonian decreases as the block size is increased and the exact ground state can 
asymptotically be written as a suitably symmetrized product of the E-states. The principle 
in fact appears to be bome out in the case of the spin-l/2 transverse king (ITF) model 
where slow but systematic convergence of critical exponents with block size is achieved 
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within a RSRG scheme whereby blocks of sizes 3, 5, 7, 9 and 11 are diagonalized and the 
basis B is formed from the states of lowest energy [11J. 

This principle as applied to estimates of critical exponents is however non-rigorous in 
general and within the DMRG scheme there is likely to be a limit to accuracy of infinite 
lattice results imposed by the finiteness of n,. That is, the finiteness of n, imposes restrictions 
on how accurately we can determine important states of large blocks. In practice it may 
therefore be profitable to enlarge B and hence L’. This may have the undesirable side effect 
of leading to 1-I’ lying in an enlarged space with more interactions. 

Finally, we describe how the approach considered here differs from that used in [SI. 
In [SI, relatively small superblocks (of up to 12 sites) are diagonalized exactly, reduced 
density matrices are then constructed for small system blocks (of either 3 or 4 sites) and 
the basis B is formed from retaining the 2 (4) most probable states for 3- (4-) site system 
blocks. This is the direct DMRG analogue of the RSRG calculations [9]. In the approach 
considered here we again use only a handful of states to generate the RG transformation but 
many states are retained at each iteration for the purpose of constructing successive system 
blocks. That way we attempt to work with accurately determined imporrunt states of large 
blocks. Also, the density matrix eigenvalues are used in order to obtain a natural selection 
of the basis B. 

3. Application to the spin-l/2 chain with anisotropy 

We now apply our method to the S = l/2 case of the Hamiltonian given in equation (1). 
This model is integrable and many properties have been calculated exactly [13]. We only 
consider y 2 0 here. In this regime the model has two trivial, stable fixed points. At y = 0 
(the king fixed point) the ground states are the classical Nee1 states and there is a finite 
energy gap and long-range antiferromagnetic order. At y = cc (the X Y  fixed point) the 
model is equivalent to a spinless fermion gas [14], the spectrum is a gapless continuum 
and there is no long-range order. There is a phase transition at y = yc = 1 (the isotropic, 
Heisenberg point). This critical point separates the gapless phase from the gapped, ordered 
doublet phase. 

The phase transition is pathological in that the critical exponents are either zero or 
infinite. For example, the thermal exponent U, describing the divergence of the correlation 
length $, is usually defined by 

However, for the S = 1/2 model we have the exact result 191 

whence U = W. 
As mentioned, the RSRG method has been applied to the S = 1/2 model [9]. Blocks of 

size L = 3, 5, and 7 were used and the basis B was comprised of the two low-energy states 
(in the S+ = f1/2 sectors) and was identified with the up and down states of a spin-l/Z 
site. The estimates of U so obtained were spurious in that U .1 2 as L --f ca. 

Here we calculate v from RG transformations derived within the DMRG scheme 
described above. We use the periodic superblock, augmenting by two sites per iteration 
with a single site as an initial system block (hence L is always odd). We choose [ B [  = 2 
(L’ = 1, b = L), identifying the most probable states in the S$ = i1/2 sectors, which 
we denote by I t ) )  and I L)), with the up and down states of a single spin-1/2 site. The 
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renormalized Hamiltonian then has matrix elements 

(u’p’l31’lup) e!! ((p’l @ ((“1311.)) @ IP)). (5) 
31‘ has sixteen mamx elements; i.e., B @ B has four elements. However, the DMRG 

From algorithm preserves certain symmetries of the Hamiltonian at every iteration. 
conservation of total z-spin we have 

(u‘p’l’H’lup) = 0 if a’+ p‘ # U  + p .  (6) 
From spin-flip symmetries we also have the following obvious relations: 

These symmetries reduce the number of independent matrix elements to three, namely: 

The identification of ‘H’ is simple. We can write 31’ in the same form as 31 (up to a 
(ttIX’ltt), (J.tl‘F1’lJf) and (t&l‘W&t). 
scale factor J’ an additive constant C‘): 

‘H‘= J‘[SfSi+ y‘(S;S;+S:S;)]+C’I (10) 
where I denotes the identity operator and J’, C‘ and y’ are uniquely determined from 
the three independent matrix elements. As mentioned, in general the identification is 
overdetermined. 

Figure 1. The renormalization group transformation y‘ = T(bly) for the anisotropic spin-112 
chain from the DMRG method with ns = 50 for various block sizes b. The thick dashed C U N ~  

is the RSRG result f o r b  = 3. 

It is found that the renormalization group transformation y’ = T ( b l y )  converges quite 
rapidly and uniformly with n,. We plot the transformation for various block sizes b (or L) 
in figure 1 in the case where n, = 50. We also include a plot of the RSRG result [9] for 
b = 3, namely 

We see that the RSRG and DMRG results are almost identical for b = 3. We shall see, 
however, that a marked difference emerges for larger b. 

We see that the transformation has trivial fixed points at y = 0 and y = CO and the 
critical point y = ye = 1 is recovered as an unstable fixed point. This is to be expected, 
again from symmetry considerations--that is, ‘H only has full rotational symmetry at y = yc. 
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Figure 2. DMRG estimates of the critical exponent Y as a function of block siZe b for ns = 20 
(dashed line), n5 = 35 (dot-dashed line) and ns = 50 (solid line). The thick dashed curve is the 
RSRG result. 

Note that the same argument applies in the spin-I case. As mentioned, however, it 
was found that the self-mapping for the S = 1 case rapidly became inconsistent as b was 
increased. This is consistent with exact diagonalization results [IS] where it is found that 
the S = 1 model is not critical at y = 1 but rather at y = 1.167(7). 

Results for the thermal exponent U. Following [9]  we use the following standard relation 
in order to obtain the thermal exponent: 

We plot the estimates of the exponent as a function of block size b in figure 2 for various 
values of n,. We also include the RSRG results from [9]. We see that the DMRG results 
are qualitatively more consistent with the exact result v = CO in that the DMRG result 
increases with b whereas the RSRG result monotonically decreases with b. Further, the 
DMRG result may increase without bound as b -+ CO. We plot e" versus b for then, = 50 
case in figure 3. This function appears to be linear for large b, consistent with U diverging 
logarithmically with b. 

4. Discussion 

In this paper we have presented a scheme for using the DMRG algorithm to generate RG 
transformations in the space of coupling constants. The scheme allows us to study critical 
phenomena directly using the DMRG method. The scheme makes use of the fact that 
the important states of large blocks are accurately calculated within the DMRG algorithm. 
Also, a natural solution to the perennial problem of the choice of renormalized block and 
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, b y  24 ' " " ' . '  

32 34 36 38 40 42 44 

Figure 3. e" versus b for the ns = 50 case. 

the identification of the renormalized Hamiltonian is proposed in terms of the density matrix 
spectrum. This allows us to distinguish the different universality classes of the isotropic 
point in the anisotropic spin4 Heisenberg model. For S = 1/2, the RG transformation is 
a self-map with the isotropic point as a critical point. For S = 1 the model maps onto an 
S = 1/2 model with dimerization and longer-ranged interactions that can be identified with 
a coupled S = 1/2 chain. 

We have applied the method to the pathological phase transition in the S = 1/2 model. 
Results for the thermal exponent v are qualitatively better than the comparable RSRG results. 
That is, the exact result is U = M. The RSRG method yields v J 2 as b --f 00 (where b 
is the block size) whereas the DMRG method has U increasing with b, seemingly without 
bound. 

We believe that the scheme described here may be useful in studying critical phenomena 
in quasi-one-dimensional systems with many states per unit cell, such as coupled spin or 
fermion chains, extended Hubbard-type models with a charge transfer gap and spin or 
fermion models with dimerization and frustration. 
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